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OCCUPANCY MODELS, BELL-TYPE POLYNOMIALS AND NUMBERS

AND APPLICATIONS TO PROBABILITY

T. Cacoullos

Statistical Unit, University of Athens

Abstract

—Multipartitional extensions of Bell (unipartitional) polynomials
are shown to be & natural and strong tool in the study of multivariate
compound discrete distributions through their generating functionms.
Modifications of exponential polynomials simplify proofs in
fluctuation theory, whereas asymptotic properties of such polynomials
are used to establish the asymptotic normality of a wide class of
combinatorial distributions, including Stirling and C—numbers._
Extensions of these numbers, the non-central Stirling numbers and the
mutli-parameter Stirling and C-numbers are studied in conjunction with
distributional, estimation and characterization problems related to
compound distributions. Combinatorial and occupancy-model aspects
are also discussed. Dimgnostic tests in data analysis are pointed out.

r=

\

Keywords: Multipartitional Bell polynomials, non-central Stirling
numbers, multiparameter Stirling and C-numbers,
combinatorial distributions, fluctuation theory, compound

distributions, characterizations, regression function.




OCCUPANCY MODELS, BELL~TYPE POLYNOMIALS AND NUMBERS

AND THEIR APPLICATION IN TY THEORY

1. GENERAL BACKGROUND OF RESEARCH AREA

The development of classical probability theory has its arigins in games of
chance and is primarily of the discrete type. Even today, it is customary to

introduce and describe many discrete probability models in terms of urn or
occupancy models. The models themselves and their ramifications inwolve concepts
and methods of canbinatorial analysis. It is not, then, swrprising that
camnbinatorics, in one form or ancther, has always been in the foreground of

probabilistic and statistical-inferential arguments since the times of Pascal ard

Fermat.

However, in spite of an abundance of probability-related cambinatorial
results in the vast mathematical literature over a long period of two or three

centuries, many of the results are "randamly" and sparsely scattered in so many

f
books and professional journals so that they either remain unknown to the majority ‘

of professionals or keep being rediscovered all the time. The gap was widening h

also due to the fact that certain closely related areas of mathematics, such as ‘

the calculus of finite differences, were neglected in modern curricula. It is l
only recently that attempts have been made to tie up such results in a systematic
marner. For these reasons, monographs such as Jordan (1950), David and \
Barton (1962) and Johnson and Kotz (1977) signify a good move towards a unified

approach of the methodology in the wide-scope area of cambinatorial probability.
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\'ms.s research concerns: occupancy or urn models, Bell or partition polynami-
. als and certain kinds of numbers (integers) relating to Bell polynamials such as |
Bell numbers. One can arrive at these nuwbers fram different direction§, as will
becare clear in the sequel; nevertheless we cover all such numbers, which are also

connected to occupancy models, under the name “Bell-type" numbers.
Occupancy models and distrilutions are well understood. rn models con-

stitute the usual, though not the only . . way to introduce most discrete distribu-
: tions. The recent monograph by Johnson and Kotz (1977) provides a camprehensi-
5 | ve exposition of this approach. .

Partition polynanials, also called Bell éolynanials by Riordan (1958 ,

1968) are connected with the derijvatives of a camposite function and provide a power-
ful tool in the treatment of carmbinatorial and prababilistic problems, Let

A(t) = f(g(t))

and define Dt = d/dt, D“ = d/du, (1)

A, =DLA), £=0) f@ with usgle), O gli=g,.

AII= Yn (f: 91,-...gn) . (2)
where Y“ ‘s a partition polynamial defined by
k4 k2 kn
§8gs0eerg) =5 — 0 Fx (91)(.23_)...(_&)
ol T U S IV AEY nt

and {he summation is over all partitions a(n) of n, 1.e., all non-negative integers
k1,. . ..k“ such that
k1 + 2k1ouo+'*n= n ’

1 i

k-k1+k2+...+kn

and
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represents the nunber of parts in a given partiti&. The SO called exponential po-
lynamials, En(g1,...gn), introduced by Bell (1934 a, b,),are a special case of Y.

namely, when fk =1, k=1, 2,... Thus

v

n
e’ D, ed , g=zg(t) (3)

En(g1' ) -gn) = Yn(1; g‘l' . oogn) =
The exponential generating function (egf) of the sequence Y., n)o}(Yo=1)
of Bell polynanials can be written in the form:

oo n
— - u
exp (uy) -nonn(f P Gyeeagn)

k (4)
= exp[f( ) «—E-.-) = exp[f G (u)],
k=1 )
vhere,in the exponential expansions, we set
G (u) = exp[(ug) - QO] sz fk , gk‘é 9 s e Y . (5

It should be mentioned that (4), in canjunction with (5) , attests to the
general fact that the algebra associated with egf's is what is known as the Blis-
sard (ar symbolic or umbral) calculus; the algebra of ordinary cenerating functi-
as is knoun as the Cauchy algehra.

In the umhral calculus, a sequence a, may be replaced by the sequence

a” of powers and when all operations are verformed the exponents are changed
back to indices. For ¢ “ample, if A (u), B (u) and C (u) are the egf’s of the se-
quences a_, bk and Cx ¢ respectively, and

C (u) = A (u)'B (u),
then n
c = (a b .
n k=0 k ak n-k
so that, in the umhral calculus notatim,

= NG n. .
c, = (a+b),a_an, b _bn :

the egf’'s behave like esponential functions:

<l




A
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nd
]

C (v)= exp (cu)= exf\(a + b)= exp (au) exn (bu)= A (u) B (u)

The exponential polynamial E n(t1,.. .tn) is closely related to the generat-

ing function (gf), Riordan (1958),

. kX
z C (k"-o.kn) t1’nootn ’ (6)

C (t t) =
noa(m

n 1,...

of the nunber C (k1,. oo kn) of mermutations of n elements with k1 unit cycles, k,

2-cycles, etc. €, is the cycle indicator of the symmetric group and is expres-

sed in temms of E_(ty,...t ):
- -1\
Cn(q'o.-tn)'En(t1’ tzl 20‘ t3'to-'(n 1)- tn).

The palynamials En are cannected with several enumeration prablems. For
details,we refer e.~., to Riordan (1958, 1268) . We mention here, e.g., that
Ch (t,...t) is equal to the gf.of the signless Stirling numbers of the first kind

cin,X) = (—1)k+ns(n,k), where s{n,k) are the Striling nugbers of the first kind;

c(n,k) is equal to the nuvher of permutations of n elements with k cycles; similar-
ly, Cn (o, t,...,t) is the af of the numher of permutations with k cycles no one of
which is a unitary cycle. Moreover, the polynamials En(t1" “tn) themselves,in e-
xactly the same manner as the Cn’ are related to ordered cycles of permutations.
E is the ordered-cycle indicatar and is associated with Stirling numbers of the

secan@ kind, S(n,k). Far exaple, the polynomials

N
’ s, (x)=En(x,...x) =k:ins (n,k) K (7

for x=1 give the Bell nunbers; Sn(1) equals the number of partitions of n.

Mnother application of En(g1, . ..gn) with 9= (s)kx, s> o or an integer, |

leads to the polynamials

C,500= Epl (8)4%,0(e)x) = £ €, K, ) o,

k=




where the C-numbers C (n,k,s) were introduced by Cacoullos and Charalambides(1975) u
and further studied by Charalambides (1974, 1977). These authors shoved in a se-

ries of mapers (see also Cacoullos 1977) that Stirling numbers of the first and

second kind and C-numbers, as well as certain generalizations of these, emerve ,qui-
te naturally,in a unified treatmenﬁ, via eqf's, of the minimun variance unbiased
estimation prablem for left-truncated logaritimic series, Poisson, binamial amd i 4
negative binamial distributions,

The role played by Stirling numhers in occumancy and distribution prohlems %
is well known; also their interpretation in terms of cvcles of permitations (Rior- v
dan ,1958). Analogous cambinatorial intervretations,along with their probabilistic

counterparts, can be given for the C-nunhers and their ceneralizations. If s is a

oy

1 rositive integer the numbersC (n,k,s) are associated with the classical counons

collector’'s problem. If s is a negative intejer then n.-C(n,%,-s) /k%. equals the

Number of ways n> k indistinguishable balls can he distributed into k oroups, each

of s cells, so that each groun contains at least one ball. The generalized C-num-

bers, C(n,k,s,r),corresnond to the situation where each qroup is to contain at ' |
least r balls (Charalambides, 1974),

The above type of numbers anmpear in other contexts as well. For examle,
the generalized Stirlinc numbers of the second kind, in our notation S (n,b,r),coin-

(b.3)
cide with the numbers S( 1)for j=0, in the notation of Sobel et al (1977). They
n
’ (k)
were introduced in the study of the Type 1-Diriclet intecral Ip (r,n). This is

a multivariate extension of the incamplete beta function, Ip, for multinondal-re-

lated probabilities, In fact, .
n (b) {
S(n'b,r) —5-:— = 'I1/b(r'n) (8)

. (b)
ané I1/b(r,n) is _x mr ability that each cell in a binomial distrihution

'
]
g
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receives at least r balls. Tables of S(n,b,r) are given in Sobel (op.cit.) for b=1 \

(1) 23, nzb(1) 25, r=1 (1) [n/b]. For bzl , the incamwlete beta function

(1) ) Ip r-1,, o mr '
Ip (r.nF Ip(r,n r+1) Blr.nroD Vo

can he written as

n-r . .
1M e my=pF § L4l oI
P J=0 F(r)J!

whose generalization leads to a Type 2-Dirichlet intearal (see Cacoullos and Sabel,
1966) .

mpparently, the first systematic attemt tO use Bell polynonials in
probability has been the recent study, Charalamhides (1977 ) of cawound(generali-

2ed) discrete distributions. Let N and ¥

i be indemendent integer -valued random va-
riables with prohability generating functions (pxf) £ and g, respectively. Then
the oof, P(t) say, of the campound distribution of

SCY X b+ Xy

is given by the compound function P(t)= f(g(t)) and ,in view of (1) and (2) and the
elenentary result

. _ L n '
P, (£,9)=Pi§=n] = = D¢ P(B) |y
we readily obtain the camound probability function in the fomm
P, (f£,9) = £(g(0))
1 . ;
pn (f'g) =‘E Yn(flg‘l' -..,gn) (9) '

n . n ,
where £ =Dy f(u) jwqlo) , o = D, g(t) t=o.

Tran a recurrence relation for Yn one obtains the hasic recurrence

1

n
- 1 \ k:
Pas (£:9)= g ) ar Fnf Pox (B0, FER

Similar results can be given for the moments of Sy-




INTRODUCTION AND SUMMARY OF RESEARCH :\

Witkin the general scope of the research projecé, the results, are
exhibited in the following Sections 2-8. Whenever the results are already
published, only main ideas and summaries are given in these sections. When-
‘ever the work is still in the process of publication, it is presented in an
appendix.

Section 2 gives some general theory concerning compound (generalized)
discrete distributions. It also discusses ad hoc estimation procedures in
conjunction with the problem of modeling certain real accident data by using
the usual discrete distributions.

Section 3 presents extensions of Bell polynomials appropriate for the
treatment of multivariate compound distributions.

Section 4 deals with the asymptotic normality of general combinatorial
distributions, including Stirling and C-numbers as special cases.

In Section 5, non-central Stirling numbers of the first and second kind
are defined and their applications in convolutions of classical discrete
distributions as well as their combinatorial interpretations in occupancy
models are discussed. Another extension, the multiparameter Stirling and
C-numbers, motivated by the estimation problem for rmiltiply truncated power
series distridbutions is further discussed in Appendix A.

Some modifications of Bell polynomials useful in simplifying proofs in
fluctuation theory are given in Section 6.

Finally, Section 7 looks at compounding from the point of view of mixtures
of distributions. It turns out that the regression function of the mixing
variable on the mixture (compound) variable in conjunction with identifisbility
results yields characterizations both for discrete and continuous mixtures.
Since the regressions in the discrete case are closely related to Bell-type

polynomials and numbers, the results are given in Appendix B.




!

2. MULTIVARIATE DISCRETE MODELS GENERATED BY COMPOUNDINGl\
Multivariate discrete models (N,%) generated by compounding (generalizing)
an integer-valued positive random variable (r.v.) N by a d-variate discrete
random vector i = (xl,...,xd) are investigated via probability generating
functions {p.g.f.) and it is shown that Bell polynomials and related numbers
(e.g. Stirling and C-numbers) play an important role, not only in expressing
probabilities and moments,but also in explicit representations of the conditional

distribution of N given %. More specifically, the (compound) distribution of

Z 1is determined by the representation

Z = E,+ 4§ (1)
oAt Bl
where 51,52,... are independent observations on £, which is assumed
o ~

i independent of the generalized r.v. N.

i Several applications lead to such models. For example, N may represent
the number of car accidents in a given locality during certain time periogd,

Xl the corresponding injury accidents, X, the fatal accidents, X the

3
injuries and X), the fatalities. The Joint behavior of N and any or all
of the X, requires an (N,2)-model.
Y
The emergence of Bell partition (d=1) and multipartitional (Section 3) ]

polynomials in the study of the probabilistic structure of an (N,Z)-model is
"

due to the follwoing ©basic facts:

1. The p.g.f. G of (N,%) is given by i

Glu,y) = g (u.gy(¥) (2) !

where 8, is the p.g.f. of N and 85 the p.g.f. of £§ the p.g.f. of

the compound distribution of Z is the compound function gl(ge(v))=G(l,v).
Ly " "




ruasd ‘
“
]
]
x

2. The p.g.f. of N given Z = (2 ""’%k)’ hz(u), say,*‘s given by
" .
n

h.(u) = 6'8)(u,0)/c!®)(1,0)
n N

N
£ X X
where
( ) ] °G(u,V)
G & (Q,B) = . U=, Z.FzZ. tecet2
v " z FAN 0 "1 Kk
N 8_1-+-3 v=g
V1 Vk "

Some general results, Cacoullos and Papageorgiou [9], concern the

conditional distribution of N given 2=z, when d=1, i.e., when 2 is

a scalar r.v. It is shown that (for details we refer to [9]):
(i) N|Z=z 1is a convolution of N|Z=0 and another nonnegative r.v. Y.

(ii) If N and X, have power series distributions (PSD), then the

conditional distribution N|Z=0 is the same distribution of N with & new

parameter by6 where 6=91/f2(92);91 is the parameter for N, and

_ Ko . .
f2(62) = kgo bke2 is the series function for X,.

(iii) If N is Poisson and X, as in (ii), then the r.v. Y

1 of has a

PSD with series function the exponential polynomial Yz(ble,Q!bQB,...,z!bze),

that is, & general combinatorial type distribution, Harper [21].

Fitting some actual data concerning injury accidents (N) and fatal accidents

or fatalities (Z) in eastern Virginia, Leiter and Hamdan [27] used a Poisson-
Bernoulli and a Poisson-Poisson model. Negative binomial-Bernoulli or negative
binomiel-Poisson models gave more satisfactory results, as judged by the x2-
criterion, Cacoullos and Papageorgiou [10]. A Poisson-binomial model [8], was
also fitted to the same accident date,

In addition to the probabilistic aspects of these models, inferential

problems are also examined. Thus, in view of the difficulty in obtaining

explicit solutions of relevant maximum likelihood equations, speciml ad hoc
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procedures are employed. Such are the methods of "even points", "zero frequencies"

and "ratio of frequencies".
The method of "even points" was used, [10], to estimate the three
parameters (N,P and A) in the NB-P model; in addition to the estimators

X and Z of E(X)=NP and E(Z), respectively, use is made of the equation

6(1,1)+6(~1,-1) = 2(Pee+Poo)

where G(-s-) is the p.g.f. of (X,2) and

Pee = P[X=even, Z=even], P00=P[X=odd, Z=odd].

This yields & third estimating egquation

B )/n (Q = 1+P)

1+ [Q+Pe = 2(s_ *+S.,

where See and SOo are the observed frequencies of [X=even, Z=even] and
[X=odd, Z=odd] in a sample of size n, respectively.

The method of "zero frequencies" uses the relative frequency o in
the (0,0) cell and the proportions fO. and f.O of zero observations in

the two marginals. The method of'ratios of frequencies" makes use of ratios

/T etc. For further details, we refer to [9] and [10].

such as f. ./f 0

1,0/ T00,11.

3. MULTIPARTITIONAL POLYNOMIALS
Several situations (cf. Section 2) call fcr the study of a compound

(generalized) vector random variable (r.v.)

Y=x+...+§v (1)

T R T

TR IR




generating function (p.g.f.) g(x), sey, and N is a noai?egative integer-
valued r.v. independent of the Zi’ with p.g.f. f(u). Then the compound
(generalized) distribution of Y hes p.g.f. f(g(x)). If the X, are
continuous r.v.'s with common moment generating function (m.g.f.) (or
characteristic function) Q(x), then the m.g.f. (or c.f.) of X 1is againa

composite function, f (o(x)). Thus we could consider the usual properties

of Y (probability function, moments, etc.) in terms of the functions f and g.

The case of scalar r.v.'s Xi led very naturally to the use of Bell
(partition) polynomials Y , Charalambides [13], since Y~ may be regarded
as the n-th derivative of the composite function A(v)=f(g(v)) in terms of
the derivatives f, of f(.) and g, of f(.), k=1,2,... . Similar
considerations motivated the introduction of bipartitional polynomials Amm
for the study of Y in the bivariate discrete case, Charalambides [lh].
Essentielly, the analogous multipartitional polynomials can be used for the
treatment of multivariate distributions of (N, x) (cf. Cacoullos and Papa-
georgiou [9]) since the p.g.f. of (N, K) is flu g (x)) as stated in
Section 2.

For distributional purposes, it is convenient to define a bipartitional
polynomial Ymn in terms of derivatives as follows ,

Let A(u,v)=f(g(u,v)) and set

k ai i

d 3t "
£.= S r(t)],_ . B - glu,v), A ——-A(u v)= DmD JAlu,v)
k atk t=g(u,v) lj du” Bvi mn u” avh
Then ot k,
min! f R n g i}
k _Al_
o™ Yon=Y (f,g - S-S L) n n( ) (2)
012810 Y Kootk ol ek ! 1=0 3=0 iyt

vhere the summation extends over all partitions of the bipartite indexes

m

(mn) i.e., over all non-negative integers k., satisfying [ i z k
m 1 i=1 30 1

. 2 z k -n; X is the number of parts in the partition. The expression on

J i=0

the R.H.S. of (2) is the analogue of di Bruno's formula for Bell (partition)

SOTos WP Pty 0.3 A
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polynomials, Riordan [28], end may be usedies an alternative definition of Ymn

(ef. (2) of Section 1).
An immediate consequence of the fact that Amn=ymn is that the
probability function of Y¥=(Y,, 12), with p.g.f. f(glu,v)), is

—P[Y =m 12 n] ;r;;r mn(f;p01,plo,...,i!J!piJ,...,m!n!pmn)

k
=4 = =4 Y = = - =
fk‘ _—E.f(t)lt=p00’ piJ-Ple-l’x2-J]’ X-(Xl,xz), Poo-f(s(ogo))‘f(poo)'

dt

Moreover, the factorial moments u(m n)=E[(Y1)ﬁ(Y2)n1 are
’

u(m,n)=ymn(a;8(091)’8(1,0)’.°"B(msn)) akEu(k)

with (k) and 6(1,3) denoting the factorial moments of N and (Xl,X2),
respectively.

As in the case of simple Bell (unipartitional) polynomials, using the
umbral (Blissard) calculus, we may define the polynomials Y  of (2) in

terms of their exponential generating function :

oo

8

m n

Y(u,v) = § ] v %Yo expr{c(u,v)-6(0,0)}]
m=0 n=0 v
o o i J
with £%f., G(u,v) = &y 71
i Y 120 JZO )it ge

This can be used to derive recurrence relations for Ymn' Moreover (5)
(see also (4) and (5) of Section 1) implies the following important.
Remark. Bell polynomials can be used equally well both for truncated and
non-truncated versions of discrete compound distributions. Truncation
amounts to the cancellation of certain gij’ corresponding to truncated
values of the r.v.'s.

Bipartitional polynomials can arise in another situation of bivariate

compounding. Let

(3)

(L)

(5)

et Y

e

e - - e
PP

. —
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Y =X X e, i, 1=1,2, (6)
where, Nl,N2 are non-negative integer-valued r.v.'s with jJoint p.g.f.

F(*s*), the xij are independent with p.g.f.'s gi(') (i=1,2) and the

{XiJ) are independent of (Nl’NZ)' Then the p.g.f. G of (Y,,Y;) is

easily seen to be the composite function

G(u,v) = F(g,(u),g,(v)).

The special case f,=1 (k=0,1,..) 1in (5) gives the bivariate (bipartitional)
analogues Emn(gOI’glo’gll""’gmn) of Bell exponential polynomials
(ef. (2) and (3) of Section 1). Thus in the important case of compound

bivariate Poisson distributions, when either N or (Nl’Nz) is Poisson,

the p.g.f. of (Yl’Yz) takes the form

6{u,v) = exp[r{g(u,v)-1}] (1)

in the former case (1), whereas in the latter case (6), it is of the form

G(u,v)=exp[Al{gl(u)—1}+A2{g2(v)-1}+Alég1(u)g2(v)—l}] (8)

Two examples of (7) and (8) have been studied by Charalambides and
Papageorgiou [17]: (a) X; in (1) is a bivariate binomial i.e.
g(u,v)=(p00+p10u+p01v+p11uv)n and (b) the xij in (6) are independent
binomials, i.e., gi(u)=(piu+qi)ni. They provide alternatives to Neyman
type A models used by Holgate [22] to fit certain ecological data.

It should be observed that the exponential polynomials Emn are
associated with compound bivariate distributions in which (Yl,Ye) has a
p.g.f. of the form

h(u,v)

G(u,v) = e (9)

In this situation certain useful relations may be stated. .

The bipartitional exponential polynomials ) satisfy

Enn{€01s8105+ -+




the recurrence

E . =1.

m n+1 Z I (m)( )gr s+l n-r+l,n-s °’

s=0 r=0 00

The p.f. P(m,n;h)=P[Yl=m,Y2=n] associated with (9) is given by

(er (3))

h(o.O)

P(m,n3h)=e (h01,h10, 11,..., }/m!n!

where (see (1) of Section 1)

_ 8. r
h.g = DD hlu,v)|

u=0, v=0 '
As regards the factorial wu(m,n;h) of (Yl,Yz) we have (cf (L))

u(m,n;h) = Em,n(COI’Clo’cll"'"cmn)

where

s.r
Crs DvDu h(u’v)|u=l,v=l ’

Using (10) we get the recurrences

2]

h

n
1 s+l
P(m,n+1;h) = =T Z z —%457- P(m-r ,n-s;h) ,
s=0 r=0
T % omn
p(m,n+1zh) = } ) (r)(s) cr’s+1u(m-r,n-s;h).

s=0 r=0
Marginal and conditional p.f.'s can also be given in terms of E

n(0,1)

P[Y1=m] = e Em(hl,...,hm)/m!

where Em is the corresponding unipartitional polynomial and

- r -
h, = D h(u,l)lu=0 r=l,...,m

and the conditional p.f. of Y2 given Yl=m is given by

Em,n(hOI'hlo"”'hmn

P Y,=n Y,=m = exp h(0,0)-h(0,1)
n!Em(hl....,hm)

For more details we refer to [1L].

(10)

Thus

AP - PI. Mes

e
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4. ASYMPTOTICS OF COMBINATORIAL DISTRIBUTIONS

Relations between Stirling and C-numbers and Bell polynomials, as
well as their role in discrete-distribution theory and occupancy.type
problems have already been made clear in the preceding sections.

Another interesting probabilistic aspect of Stirling and C-numbers
is tied up with the asymptotic normality of the so called combinatorial
distributions. A first result in this direction is that of Harper [21]
showing the asymptotic normality of the combinatorial distribution defined
in terms of Stirling numbers of the second kind, S(m,n), namely, the

distribvution of

S
P[xmzn] = ——L%;E) n=0,...,m, m=0,1,... (1)

m
where Bm= 2 S(m,n) is the Bell number. Another case considered by
n=0
Ch&ralambides.[lZ], is when S(m,n) is replaced by the C-number
C(m,n,s), Cacoullos & Charalambides [6]. In & general combinatorial

distribution, the S(m,n) are replaced by A(m,n) which are assumed

to satisfy the "generalized Pascal triangle":

A(m+1,n)=g(m,n)A(m,n)+h(m,n)A(m,n-1) (2)
where g and h are positive; also the r.h.s of (1) is multiplied
by L s, i.e. the general combinatorial distribution is defined by

m
p[xmgn] - Almyn) ;n » AN = T A(mn)a" . (3)
A_(2) n=0

The question raised here, Kyriakousis [26}, is under what conditions
on g(m,n) and h(m,n) the asymptotic normality (as m+) of the
general combinatorial distribution obtains.

In particular, the problem of asymptotic normality is studied

through the asymptotic behavior of the polynomials
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m
A ) = § Alm,n)®.
n=0

It is assumed thet the Am(A) are Bell exponential polynomials, defined !

by their exponential generating function :

@ m
n 1
mzo A (2) iT-= exp{A[£(2)-£(0)]}, £(z) = ngo c z -

For example, if f(z)=ez, then Am(l)=Bm, the so-called Bell number
and A(m,n)=S(m,n); if £(z)=(1+z)%, &>0, then A(m,n)=C(m,n,s), the
C-numbers. Furthermore, asymptotic expressions for ratios Am+k(k)/Am(A)
are obtained under certain conditions on g. These ratios determine the
| asymptotic behavior of the variance (k=2) and the mean (k=1) of the

an. Then applying the normal convergence criterion to the sequence

{an} shows the asymptotic normality of the corresponding combinatorial
distribution. Also, a useful result in this direction is that of Haigh [20],
vwhich requires to show that the polynomial p.g.f. of Xm has real roots.
Some general conditions on g(m,n) and h(m,n) under which the

corresponding combinatorial distributions converge to the normal (as m»)
are given in Kyriakousis [26]. They imply, as special cases, the asymptotic
normality of the combinatorial distributions defined by :

‘a) the signless (absolute) Stirling numbers of the first kind |s(m,n)]|, ?

vhich satisfy the recurrence (cf. Appendix A)

|s(m+1,n)|=m|s(m,n) |+|s(m,n-2)},

(b) the binomial coefficients (ﬁ) so that by taking A=p/q in (3) one

obtains the well-known asymptotic normality of the binomial distribution
(¢) the Eulerian numbers

E(m+l,n)=n E(m,n)+(m-n+2)E(m,n-1)

and the generalized Fulerian numbers, Dwyer [19],Ea(m,n), a>0 integer, with




,
. i {
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recurrence

..\ Ea(m+l,n)=(n+a)Ea(m,n)+(m-n+2-a)Ea(m.n) .

() the Stirling numbers S{m,n) of the second kind (al(m)=b0(m)=l,

ao(m)=0), first shown by Harper |21| for A=1; also the C-numbers, Clm,n,s),

end the signless numbers |C(m,n,-s)|, [12] (see elso Appendix A). Finally,

the non-central Stirling numbers of the second kind Sa(m,n), studied by
Koutras [25], with the recurrence (see Section 5 )
Sa(m+1,n) = (n—a)S(m,n)+Sa(m,n—1),

for a<0 also converge to normality

5. NON-CENTRAL STIRLING NUMBERS - MULTIPARAMETER STIRLING AND
C-NUMBERS.

The Stirling numbers of the first kind s{n,k) and the second kind

8(n,k) are usually defined r . the coefficients in the expension of the

factorial (x)n in powers of x and vice versa (see also Appendix A).
The non-central ones are their analogues when xk is replaced by (x-c)k
for some real c¢. This leads to an equivalent definition in terms of
exponential generating functions (egf). Thus the egf for the non-central

(around c) numbers of the first kind sc(n,k) is found to be
T " 1 k
£,(t) = T s.(nk) 5= (144)° 55 log(1+t) %5 (1)
n=k : :

{ similarly the egf h(*) of Sc(n,k) is given by

m () = ™% 2 (eton)k, (2)

These expressions can be used to obtain relations between non-

| central and central (c=0) Stirling numbers. Moreover, they are con-

L - —




venient for the definition of generalized non-central Stirling numbers
sc(n,k,r) and Sc(n,k,r), by subtracting the first r terms in the

expansions of log (1+t) and et, respectively.

Applications in probability and occupancy problems. Considering

power series distributions, (l-t)c, ¢<0, is the series function of a negative

binomial and -log(l-t) the series function of a logarithmic series
distridbution; it can be concluded from (1) that the "signiless" non-
central numbers of the first kind, Isc(n,k)l = (-l)n-ksc(n,k) are
associated with the convolution of a negative binomial and a k-fold
convolution of a logarithmic series distribution; similarly the generalized
sc(n,k,r) correspond to left-truncated logarithmic distributions.

Another use in probability theory of sc(n,c) is in expressing the
factorial moments L of a random variable X

in terms of its moments

Yy o gbout the point ¢, that is,
’

n
x, = ) s _(n,k)u .
no40 © k,c

Thus taking c=p=E(X), n, is expressed in terms of the central moments

W, - Conversely, the Sc(n,k) can be used to express W in terms of
»

LI From the point of view of distribution theory, the Sc(n,k) are

associated with convolutions of ususl and zero-truncated Poisson distributions.
An occupancy-type interpretation of Sc(n,k) is the following :

n distringuishable balls can be distributed into a set of k identical

cells and J distinguishable boxes so that every cell is occupied in

S_J(n,k) ways. Similarly for Sc(n,k,r).

For additional results and details we refer to Koutras 125].

Multiparameter Stirling and C-numbers.

Another extension of the usual Stirling and C-numbers in a different

direction is motivated by the estimation protlems when several independent




samples are available from the same parent distribution but the truncation

points differ from sample to sample: The relevant details of aepplications

and occupancy-type interpretuations are given in Appendix A.
6. BELL POLYNOMIALS IN FLUCTUATION THEORY

Bell (exponential) polynomials have been used in the study of generalized
(compound) discrete distributions, due to their interpretation as derivatives
of composite functions (Sections 1 through L), Another important area of
probability theory where such polynomials provide a powerful tool is the so
called fluctuation theory as developed mainly by E.S. Andersen and W. Feller.

XX k=1,2,...

Consider e generalized random walk {Sk}, vhere S
(SOEO) and the X; are i.i.d. r.v.'s. Using a classical result of
Touchard |32{on the number of permutations of n elements with specified

numbers of cycles possessing certain properties, in conjunction with Spitzer's

combinatorial lemma, yields a simple combinatorial proof of the basic result:

- 1
p, = P[s; o,....sn>o] = = C (ag,..05m))

= P[S,<0 5 <0] = 3 C_(1-u 1-a )
q = 1%0,...,8, o7 Cn 1o eal-ay

with ak=P[Sk>0], k=1,2,...,n (n=1,2,...) and C, denoting the cycle

indicator function , Riordan [28}, related to Bell polynomials Yn(tl,...,tn)

by :
Cn(tl,...,tn) = Yn(tl,t2,2!t3,..., (n-l)!tn).

1
Further simplifications are obtained by introducing the polynomials, [161,

- _n
Ck,n(x’y)'ck,n(xl""’xn’yl""'yn)—(k) Ck(x)Cn_k(y).
Exploiting certain properties of Ck n(x,y), one can show the basic result
9’

] = i
P[Nn-k] = P = T Ck’n(al,...,an,l-al,...,1-an)




"
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and hence, e.g., the recurrence *\
n-k
=] = 1 -
PINn+1_k] T n-1l+k rzo (l-ar+1) P[Nn-r—k] ’

Nn denoting the number of positive partial sums S k=1,...,n.

K?

Also simplified proofs can be obtained of some results concerning
symmetrically dependent (exhangeable) r.v.'s after proving a result
along the lines of Spitzer's combinatorial lemma. For details we
refer to [16].

7. CHARACTERIZATIONS OF COMPOUND DISTRIBUTIONS BY REGRESSION
AND BELL-TYPE POLYNOMIALS AND NUMBERS.

So far Bell-type polynomials were discussed in reletion to the
distribution of a generalized (compound) discrete random variable (rv);
also in generalized random walks (fluctuation theory). In the latter
case, it was indicated how Bell polynomials can be extended to provide

simple proofs for some known basic results. In the former case, the

probability generating function of the generalized rv. Y=XvZ,

Y = 20425400 4y, (1)

can be expressed in terms of Bell-type polynomials. For example,
Stirling type polynomials (with coefficients Stirling numbers of the
secord kind) appear whenever the generalizing variable Z is a Poisson
and C-type polynomials (with coefficients C-numbers) whenever the
Z-variable is either a binomial or & negative binomial, [9].

Bell-type polynomials can also be used to express the regression
(posterior mean) m(y) = E[X|Y=y] of a compound mixing r.v. X on the
mixture variable Y, with (absolute) probability function (p.f.)

ply) = J plyix) £(x) (2)
x




o ", |

{p(+|x) denoting the conditional p.f. of Y(X) ygiven X=x and f(‘)

the prior p.f. of X). This came up in specifit applications of the
following general characterization result.
Let p(y|x) in (2) be & binomial, negative binomial or Poisson
for every x=1,2,... . Then m(y) characterizes both p(:) and £(°).
(The details are given in Appendix B, exhibiting also several examples
of Bell-type polynomials and numbers). b
In fact, m(0) alone is sufficient to characterize p(*) and f£(-)
provided p(-ix) is an x-fold convolution of the same r.v. Z for every
s = P[Z=O]>O, Cacoullos [5]. Clearly, by varying arbitrarily the X-
distribution, an infinite variety of bivariate discrete distributions
can be characterized in this fashion. The result is brnsed on the fact

that the p.g.f. h of X satisfies the differential equation

m(0) = m(0;s) = sh'(s)/h(s) O<s<1.

Hence f(+) 1is determined and by (2) also p(-).

Finally, characterizations in terms of m(y) are obtained for
continuous analogues of (2), when X and Y are continucus. EKere the
role of X 1is plsyed by a continuous parameter 8, which is itself a
r.v. with some prior density f(*). However, since these results fall
rather outside the main scope of this research, nc further details are

given here. f
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APPENDIX A

MULTIPARAMETER STIRLING AND C-NUMBERS, RECURRENCES AND APPLICATIONS*

BY
T. CACOULLOS AND H. PAPAGEORGIOU

University of Athens, Greece

ABSTRACT

Multiparamseter Stirling end C-numberc ere defined via exponential
generating functions and basic recurrence relations are given; also, some
combinatoriel and occupancy tyvpe interpretatlions are provided.

Recurrence relations are derived for certain ratios of simple,
generalized &nd multiparameter Stirling end C-numbers. Tnese recurrences
are useful in the computation of minimum variance untisced ecstimates (mvue)
for classicel discrete distributions truncated on the left. Asymptlotic

relutions between these numbers are glso incluied.

Fey words: nmnultipurameter Stirling and C-nuzters, exponential generating

functions, recurrence relstions, mvue, left truncation, power series distritutions.
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1. INTRODUCTION

The Stirling numbers of the first and second kind are*&ess known among
statisticians than among people dealing with combinatorics or finite differencec.
Only recently have they mude their appearance in distribution theory and staticstice.

They emerge in the distribution of a sum of zero-truncated clacsical discrete

distributionc: those of the second kind, S(m,n), in the case of & Foisson distributior

truncated away from zero, Tate and Goen (1958), Cacoullos (1961);the signless
(absolutc-value) Stirling numbers of the first kind, |s(m,n)|, in the logaritimic
series distribution, Patil (1963). 1In general, such distributional problems are
ecsential in the construction of minimum vgriance unbiased estimators (mvue) for
purametric funclions of & left-truncated power series distribution (PSD).

Analogous considerations for binomial and negative binomial distributions
truncated away from zero motivated the introduction of e new kind of numbers, called
C-numbers by Cacoullos and Charalambides (1975). These three-parameter C-nunbere,
C(m,n,k), were further studied by Charalambidecs (1977), who gave the representation
C(m,n,k) = ? k¥ s(m,r) S(r,n) in terms of Stirling numbers of the first kind,
s(m,r), andrige second ¥ind S(r,n). Interestingly enough, this representation in
& disguised form was, in effect, used by Shumway and Gurland (1960) to tabulate
C-numbers, involved in the calculation of Poisson-binomiel probabilities,

The so-celled generalized Stirling and C-numbers emerged as & natural extension
of the corresponding simple ones in the study of the mvue problem for & FSD trunceted
on the left at an arbitrary (known or unknown) point Charalsbmides (197Lb). It rhould
be mentioned that, in particuler, the generalized Stirling numbers of the second
%ind were independently rediscovered and tabulated by Sobel et. al. (1977), in
conne-ction with the Incomplete Type I - Dirichlet integral.

The mu]iiparum&1<r S1irling and C-numbers are the analopucs O polrraiiced
it?rliug und C-numbers in & multi-sample situation where 1he underlying 13D is

multiply truncated on the left, Cucoullor (1975), (1977).

VO —




Recurrence relations for ratios of Stirling and C-numbers are nececsary
because the mvue of certain parametric functions of left-truncated logarjithmic

series, Poisson, binomial and negative binomiml distributions are expressed in

terme of such ratios. These recurrences bypauss the computational difficulties .
which come from the fact that the numbers themselves (but not the ratios of interest) '
grow very fust with increasing arguments. Recurrences for ratios of simple Stirling i

numbers of the cecond kind were developed by Kerg (1975).

The main purpose of this puper is to provide recurrences for certain ratios
of multiparameter Stirling end C-numlers, thuc unifying several special results,

includin~ those of Berg (1975). For the development of the topic, we found the

b TS, VA i

use of exponcntial generating functions (egf) most appropriate, both for introducing

it

the numbers hemcelves and deriving recurrences es well, Without claiming completenecs,

o S,

we included certuin basic recurrences. ns Ul.ervea elsewhere, cacouller 31975) (1977),
it is emphaciced here, once more,that in the study of PSD's the egf approach is the

one suggested by the probability function itself in its trunceted form. Also, we

found it approfriate to include certain esymptotic relations between Stirling and '
C-numbere, which reflect corresponding relations between binomial and Poisson
distributions or logarithmic series and negetive binomial distributions.

A typicel result, which involves retios considered here, is the following.

Let xi1, j=l,...,ni be & random rample from & lefi-truncated one-parareter PSD .
distribution with p.f. ‘ “
ai(x)ex r
p(x;0) = ——+—< , x=r.,r.+1,... (1.1) !
fi(e,rj) i*ti |
[+ ]

where fi(e,ri) ) ai(x)ex, i=1,...,k. If the truncation point : h

x=r, :

1 o]
£=(r],...,rk) je known and aj(x)>0 for every x>r;, i=1,...,k, then, :

Cncoullos (1977), for every J=1,2,..., 8y is estimable and its (unique) mvue,

based on al)  k  independent samples {x.,}, is given by

i)
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0.(m) = (m)J ;(;EE;ES——

....nk). £=(r1,....rk), (m)J=m(m-1)---(m—J+1) and

a(m;n,r)

nl....ny 1 =1

zm [ ey,

where the cummation extends over all ordered N-tuples (N=“J+"°+ny)
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intepers X,

caticfying

1)

e In the cases of interest (Poisson,binomisl, etc),

(1.3)

the nurberc (1ntc5ar°) a(m,p r) turn out to be Stirling or C-numliers, depending

on the seriec func

tion T,
b1

in (1.1), which at the seme time, supgests the

corresponding egf of these nunmbers.

2

and k=(nl,n2,...,nk), to be denoted by s{min,r), can be defined (ef. Cacoullos,1975)

.

GENERAL PROPERTIES.

Let

by the egf

vhere we set m=r'p =
~

the first ¥ind,

eg(t.g) =

The special case k=1,

Tiseens

multiparameter Stirling nurbers of the first kind with paranmeteres £=(r

oo

!

w=r'n

~ e

Ty

and

s(m3n,r)

s{m;n,r),

Dyyeeesly

MULTIPARAMETER STIRLING NUMBERS OF THE FIRST KIND: DE!

¥ r.-1
t%/m! = l 3 log(1+t)- 12 (-1)‘1.1
i=

=1 Tj 3=1

Tahg+ o riTy o, .

ry=r, nj=n vields the generalized ©

DEFINITION-

be non-negative integers (k»1). The

+J
J

170 0Ty

)

(2.1)

1irling nuwlers of

defined by Charalumbides (197ha),while k=1,

cives ihe simple Stirling numbers of the first kind,

r=1

s(m,n). Froporitions

2.1-2.3 rummarize busic properties und recwrences Tor s={r;n,r

facilitate thcir computetion.

Remark 2.1.
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Proposiiion 2.1.

the first kind

- AS -

The multiparameter Stirling nunbers of

s(m;g.g) have the following representation

-N 1
s(min,r) = (-1)" '1;———“——;— 2:.I1- T1 p— (2.2)
1° " Yk omoi=1 =1 ij
and the summation extends over all ordered N-tuples

where N = nl-t...-mk

of integers xij satisfying the relations

n,
k
. :_r » 1 =1,...,k and z:} if X33 =z m,
*1] i=1 331 I

Froof. We have
r.-1 K

K e
¥(t,r,) = log(l+t) - -0k 1L - 0¥ n, ok, (2.3)
i =3 k = k
i

Forning the Cauchy product of series, we find, in virtue of (2 1),

Eg(f;f) ﬁni! :ﬁ [Y(t.ri)]ni i ym-N mzf— rl'

m=p' m i=1 j=1 *ij

(2.4)

where 2: bas the sarme meaning as above:
m
Conparing (2.4) with (2.1) we get (2.2).

To obtain recurrence relations, we make use of the easily verified

difference-differential equation, satisfied by the egf gn(t,r) in (2.1),

namely,
-1 r.-1
(r) &= 7 Ep(tin) = }E; (1 i 4l Bp-g, (131 (2.5)
i=1
where g = (0,...,0,1,0,...,0). i.e., a k-compornent vector with zero

conponents except the i-th component which is equal to one.
Proposition 2.2.: (m,n) - wise relations: The numbers s(m,n,r) satisfy the ;

recurrence relation ¥
ri-l i
s(m+1n,r)+m s(m'.zz-f) z ;}-:1 (-1) (m)rj_:l s(m-ri*l'-fz'si »T) (2.8)

x*

with initial conditions é

s(O;O,r) = 1, s(0in,r) = 0 whenever ii}}hi> 0, s(min,r) = 0 if m < r'n.
-~ J:l - o~ - "~

=

Froof . TFquation (2.5) in virtue of (2.1) can be written ac

n+r,.-1
i

ol . r,-1
(lft) n}__: S(L'.:TJ.T‘) (n ﬂ— t ('J).l S(T“ n- e .X") 3‘-‘—"“:‘*‘ (2.7)

=r'n iz} n r'n- r,

-~

eIy T T




_AdL

Equating the coefficients of tm/m!' in (2.7) yields (?.6). Fote that
equation (2.6) for k = 1, r1= 1 *Fives the well-known recurrence for the
simple Stirling numbers of the f&rst kind

s{m+l,n) = s(m,n-1) - m s(m,n). (2.8)

Proposition 2.3. (m;n,r) - wise relations: The numbers s(m3n,r) satisfy

n jri (m)Jri
s(min,r+e.) = E (~1) ————— s(m-jr, jn-je,,r), i=1,...k (2.9)
~ '~ <] x cy j ite Joite
j=0 j? (ri)
Proof. We have, using also (2.3)
r. _n, n,
1 il o ILT 1 J
g (tirte.) = - [ﬁ(t.{)*(-l) o N [Y(t.!‘j)] (2.10)
-~ 3 b1 J=1 3
i#i
and using the binomial expansion .
r i qTi i /n jr, T3
it i . Ty
[m.r.n(-l) — =) U )m-r e (D" P — 20
i r, L | i n,-j i j
b J-O J I‘i
we carn write (2.10) ac
. - n, irg r4ir,
T (-1) . t n 4n
; s(rin,r+e,) = = s — s(myn-je,,r) ---—-;— (2.12)
l— ST m! L=y ] S <251 n!
n:{~g+ni 3=0 5. ri r=r'n-)r

. . . . m .
Hence, equating the coefficients of t ' /m! we obtain (2.9).

Signless rmltiparancter Stirling nunhers.From the recurrence relation (2.€),
it follows that the nurders s(mjn,r) are integers. Moreover from the

representetion in (2.2), we conclude that s{min,r) is an integer with sign

(-l)h-m, where N = n.+...4n, . Therefore if we multiply (2.6) by (—J)E-h*l ,
we obtain

k
[s(m#l;g,:)l: mdS(n;E’f)l* ?;ﬁ(m)ri_l ]s(n—ri+1;3—gi,s)| (2.13)

we call Is(m;n,r)l the signless (positive) multiparareter (k-parameter)
€tirling numder of the first kind. We will show

Proposition 2.4. The egf of |s(m,n,r)| is given by

. R ]hT . r.-1 1j ni
53(1;3) = [ |s(m;rl,§)| o7 C ~ [—Jog(]—t)- t < ] (2.14)

I
riF'n =1 Py =1 3

Freof. From the éifference equation (2.13) it is earily verificd that the
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egf 6;(11{) sutisfiec the difference-differential equution

ri-l \

a ey o .
(1“)d—t hp(t,_r) = t egl'fi(‘;.!) (2.15)

1

nex

i

which in turn yields (2.1k),
Alternatively, (2.1k) leads to the reprecentation of |s(m;n,r)| as

obtuincd from (2.2).

3. RATIOS OF MULTIPARAMETER STIRLING NUMBERS OF THE FIRST KIND.

We define, ac ratio of multiparameter Stirling numbers of the first

kind with recpect to argument m, the function

s(m+lip;y)

(3.1)

~

Rl(m;n’f) = s(m;’n,‘s)

Ratios with respect to the arguments DisTys i=1,...,k can glso
be defined. The maein reeson for considering ratios with respect to m
ic seen from (1.1), which, actually, involves reciprocels of Rl, wvhen

we are concerned with the parameter of & logarithmic series distribution.

Proposition 3.1. A recurrence relation for the ratio Rl(m;_n,r),
independent of the multiparameter Stirling numbers of the first king,

is given by

X (m)rrl ryny rii-r'p
121 ST Rylm-ryad-i3n-ey.r)
Rl(m:n,r)+m =
-~ [
n-2Z

I,
T Ry(m-isn,r)

anationd.

e
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. - A8 -

forne 1 and my 3‘3 » with tle boundury conditiong

Rl(m,l,r) z -m (3.3)
and X ng K ?A
] ={_ 0
Ry('nanyg)=(-2)(zr'n41) Nr’ ] —5 P (
i=2? 321 M i 3.4)
r (r,+1) 0 r,
Jo T
i#)
Proof.  Using equation (3.1), it can be easily seen that
'fTE s(m;n,r)
T —, .
R (n-1i; 34 r) (e D0, (3.¢)
But equation (2.2), for m = r'n, miq = LIPS S ... = mini= L becomes
(r n)!
S(r'B,n,I) ( l)r n ’\ (3~6)

[
n
—
-
n
(9

n-r'n
| R \} -y *
con P e g RHRD
s(myn,r) = PR . (3.7)
]Lr n,! r.?
i i

i=l i=
From eguations (2.6) and (3.1) we have
r.-1
3 - -
Z( -1) (m)r__l s(m r‘j+1,§ gj._g)
Rl(m;n,z)*n= LT J (3.€)
- s(min,r)

and substituting for s(m—rj+1,§i§j,r) and s(m,n,r) from (3.7) yields (2.2):

By definition

I
s(r'n+l,n,r) b

Ry(z'mmx)® Smin mry (3.9) "
using equation (2.2) for ; = r'ntl VMg T Mg, TeelE mi,l-l: mi,1+1$"' = ;
:mini z rj, my = T for 1 = J,....ni. and equation (3.6), the p
required formula (3.4) is easily obtained. |

1
The special case k = 1 'yields . F

i sttt =T
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Proposition 3.2. A recurrence relation for the ratio Rl(m,n.r), in-
dependent of the generalized Stirling numbers of the first kind, is given by 4&

rn (m)r_1 mt+l-rn
(rn)r !=L Rl(m-r+1-1.n-1.r)

R,(myn,r)m = “rm (3.10

R (m_i’nsr)
IT &

g

>

for n 8 1 and m > rn, with

Rl(m,l,r) = -m (3.11)

rn(rn+l) (3.12)

Rl(rn,n,r) = - el -

Also for k = 1, r = 1 we obtain,

Proposition 3.3. A recurrence relation for the ratio Rl(m,n), independent

of the simple Stirling numbers of the first kind, is given by

m+l-n
R, (m-j,n-1)
( _ i=1 1
R1 m,n)4m = — (3.13)
T R, (m-i,n)
i=1

forn >1 and m > n, with

Rl(m,l)

-m (3.14)

1]

Rl(n,n) - n(n+1)/2 (3.1%)

Proposition 3.4. An alternative recurrence relation for the ratio Rl(m,n,r)

is given by
m [kl(m-l,n,r)fm-é] Rl(m—r,n-l,r)
m-r+l Rl(m-l,n,r)

Rl(m,n,r)*m = (3.1¢)

forn s 1 and m > rn. Rl(m.l,r) and Rl(rn,n,r) are given by (3.131) and
(3.12), respectively.

Proof. Using equation (2.6) with X = 1, we have

(-l)r-1 (m)r-l s{(m-r+l1,n-1,r)

Rl(m,n,r)im = s(mn) (3.17)

from which equation (3.18) can be easily derived.
Applying Froposition 3.4 with r=1 gives
Proposition 3.5. An alternative recurrence relation for the ratio Rl(m.n)

is given b
given By [kj(m-l.n)fm-l] Rl(m-].n-l)

Rl(m.n)fm = - n>l, m>n. (3.18)

Rl(m-l,n)

dnieibiimefiiite ;iﬁ
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4. MULTIPARAMETER STIRL1ING NUMBERS OF YHL SiiCOND KIND

The multiparaneter Stirling numbers of the second kind S(rin,r)

defined by \heir egf
m " r.-1 3 n,
.f (t,r) = Z S(m;n,r) t—' W -:— [et- t E—;—] (4.1)
mr'n meoy=p By j=0 I
Tuking k=1,ry=r gives the generalized Stirling numbers of the second ¥ind,S(x,n,r,
Charalumbvides (197La), taking k=1, r=1 defines the simple Stirling numbers

S(m,n). The following properties of 3{m,n,r) cun easily be ectablished (.f.

Section 2).

a) They have the representation

= m! k i

S(m;{;,z) = o T n n P (4.2)
1Y m 3=1 3=1 *aye

where the summation extends over all ordered N-tuplec (H=nl+-..+nk) of

é interers X5 5 suticfying

, n,
| k i
xij 1.ri o 1 =1,...,k );ﬁ 51 xij =m.
b) They satisfy the following recurrence relations
k m
S(mt1im,r) = N S(m;g,_x:) + ,1Z-:1 (r 1) S(m-rj*l;f,_fif) (u4.3)
i . .(m)jri
S(min,rte.) = ii: (-1)) ——2 S(m-jr,in-je.,r) (4.4)
~L0S = sy 143 i dein
= 3.(ri.)

with initial conditions

s(o30,r) = 1, S(O;E,r) = 0 whenever Z:rini>0 and S(min,r)=0 if n<r'n.(4.5)

These follow from the difference-differential equation

k r.-1
d ; T3 . \
at fp(in) = N L) 4 s§=1 - sl(t )t [ (4.€)

It can be easily seen that the representation (4.2) prc ’des the following

conbinatorial interpretation in terms of occupancy nurbers.
Proposition 4.1. The number of ways of placing m distinguishable bells into -

N = nji...¢nk cells so that each cell of the i-th group of ng cells (onteins

at least r, balls for i = 1,...,k is equal to nlf...nkfs(m;gﬁz) if the




- All -

N cells are distinguishable, and is equal to S(m;n,r) if only cells
belonging to different groups are dictinguishable (and cells in the same

group are alike).

It is easily concluded from Proposition 4.1, or from (4.3) - (M.S),

that the numbers S(mjn,r) are non-negative integers.

~

»

5. RATIOS OF MULTIPARAMETER STIRLING WUMEERS OF THE SLCCOND KIND.

We define, as ratio of multiparaneter Stirling nuthers of the second

kind with respect to argument m, the function
S(m#l3n,r)
Rytmimar) = sGimey -1

Working as for Proposition 3.1 we obtain

Proposition 5.1. A recurrence reclation for the retic RE(VJDaE), indeyendent

of the multiperameier Siirling nurbers of the second kind, is given by

m , L
k (‘”j'l) 5T "“‘*TlT”
- R.(m-r.+1-3 n-e.,r)
1 LA A
R N e L
R2(m,n,r)—N e (5.2)
I I R2(n-1,n,r)
i=1
forn> 1and m > r'n with
R2(m,1,r) =X (5.3)
and
k an fi
R [ = ' { ' e I,
o{r'nip,r) (1.{”1)_1:11\1']..) «Zl —— - » (5.5)
’ T Y (1)t W (r)Y)
J i=1
i#)
The special case k =1 yiclds
Pioposition 5.2. A recurrence relation for the ratio RQ(m,n,r),
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s~

_—

indepencent of the gpeneralized Stirling nunbers of the second kind, is

given by
m
n( )r! m+l-rn
_r=1"" l | R (m-r+1-i,n-1,r)
(rn) = 2
R (m,n,r)-n = r 171
20 = m-rn

R2(m-i,n,r)
1=]
form>1andm>rn , with
Rz(m.l,r) =1

and

R2(rn,n,r) = n{rn+1)/(r+1) .

Alsc for k =1, r = 1 we obtain

(5.6)

Proposition 5.3. A& recurrence relsticn for the ratio Rg(m,n), indeperdent

of the usual Stirling nurmbers of the second kind, is given by
ntl-n

Tw- Rz(m-i,n-l)

J:

-

Tj' R2(m—i,n)

R2(m,n)-n =

forn>1 andm>n, with
R2(m,1) = 1
and

RQ(n,n) = n(n+l1)/2 .

(:.8)

(5.10)

Proposition 5.4. An altenative recurrence relation for the ratio Rz(m,n,r)

is given by

m [R2(m—1,n,r)-nj RQ(m‘r,n—l,r)
K (m,n,r)-r. = — B
2 m-r+l Rz(m-l,n,r)

forn>1and m > rn.

Applying Proposition 5.4 with r = 1 gives

{(5.11)

Proposition 5.5. An alternative recurrence relation for the ratio RQ(n,n),

is givern by
[R2(m—l.,n)-nj R,(m-1,n-1)

_ 2
Ry(myn)-n = —%--—- --

R?(m-l,n)
forn >3 and m > n.

The last relation was also derived by Berg (2075).

(£.12)
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€. MULTIPARAMETER C-NUMBERS.

\ The rultiparareter C-nurbers, C(n.;lu,s,r), are defin:d by their egf

u r.-1 n,
< " k 1 s, i_“ys, . b
wn(t;g.r) = )_ C(n‘;‘x?,s._x:) oT = TT - (1+t) ~- z_—_(l) 'S (6.1)
- - rer'n - ’ i=1 i° j=0 ' 7

vhere the 54 #0 i=1,...,k are any real numbers.

Taking k = 1 gives the generalized C-nurmbers, Charalambides (2197.a),

i
l
!
and k =1, ry=1 defines the simple C-nurbers, Cacoullos and Charalarbides }
1

(1%75), Charalardides (1977).
The following properties of Clm,n,s,r) are easily verified. -
5
a) They lLave the representation.
n, g
1 —_ 5,
C(r3n,s,r) =";'r‘""""{’.‘ }___ ﬁ rr ( 1) (6.2) =
~ ‘J--.-. k- - i= jzl xij ‘v
wiere the sumration extends over all ordcred N-tuples (N=n1+-o-+ny) of '
1riigere %, sulicsfyvin
‘ i yene n,
k i
, > i = - 2 =
lij _,ri i =1,...,k eand - jz;:xij = m.
t) Trey sexisfy the following recurrence relations,
k .
- . < _ v . W
C(“’I’P’:’f) = (s n n.) C(m’E’f’f) + j:»(r.-l (5;)r C(r-r.41;n-€,+8,r), (€.3)
=1 i i 1 "~ s
o Mg %))
Cringeg) = L C07 gy | ] ceemiigaan), (60)

with initial conditions
C(C;C’E’f) =1, C(n;n,s,f) = 0 when 1 <« rif. They are obtaineld from the

difference-differential eguation

k (Si)pi r.-1

d . R bt .
(1+t) at wB(t;g,_x:) = ¢'a (pr‘(t,i,:)+ Z_ t o (tis,r). (6.5)

{r -3)! 3~ ~ - A
f=1 {772 L

o~

The representation (6.2) leads te the following interpretation of the
C(n;ﬁ,s,i)-nuflcrs in the frasewerk of ccoupon-collecting prorlems.

Ccnnider an urp centaining k groups (sets) of distinguishable balls;
the It} group consicts of Smy Lalls and is divided into cqual subgroups
'(r’u! nets) of ¥ balls cach Learing the numbers J,....ni; noreover, suppoese

that the balle of the k groups are distinguished by different cclours sco




Y]
- Alk -~ :{l
that cach Lall in the urn is distinguished by its colour and nﬁmhcr. Now it
is eacily scen from (£.2) that 1\
Proposition 6.1. The numler of ways of selecting m balls out of an urn
with E'E = ?%: 5.0 distinguishable balls, divided into k groups by colour
and number as ibove into n, subsets of size £ within the i-th subgroup, so

that each number J,...,ni of the i-th subgroup (colour) appears at least r,

times is equal to

e C(m;_{:.f.s). (6.6)

Here it was assumed tlat 4 is a positive integer. 1f 55 is & negative

integer, say, s; = -s; » then
. P3 S5 k -s; x M3 X :;+xi.-1
I (.)- Co-mmm e () e
i=1 j=1 ij i=1 §=1 "ij i=1 3=1 X33

znd {rom (

€©.2) it can be concluded thzt the sign of C(n’fﬂf’f) is the same
as (-1)". Furtlernore, we may deduce

Proposition 6.2. The number of ways of distributing m (m > r'n) non-
distinguislable balls into E{ n cells, divided into k groups of cells witk
STt cells in the i-th group and n, subgroups each of s cellcs irn the i-th

group, so that cach subgroup of the i-tl group centains at Jeast r, balls is

equal to
n,!.....n!
A emne )] (6.8)

As an indication of the applicability of the multiparameter C-nunbers

in occupancy problems, we refer to a problem posed by Scbel et. al.{1vi{),v.%2.

Signless multiparaneter C-mumbers. From the tasic recurrence relation (€.3)
or from the last two propositions, we ccnclude that

(i) for s; > 0 integer, the pumbers C(m;ﬁ’ftf) are non-negative integers; they
are pesitive for E'E < Tg 5'23 otherwise scre.

(ii) for &) < 0 integer,the nurbers C‘”‘E-fzf) are integers having the sign

of (-1)".
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Thus, as i1 the case of the Stirling nunbers of the first kind, Ricrdan (10¢:),
the positive numbers \
m .
IC(m;E,-E*,r)I = {-1) C(m;n,-s‘ts) (6.9)

will be called signless multiparameter C-numbers,

It can be easily verified that !
Proposition 6.3. The egf of the signless multiparameter C-numbers [c(riyn,-<,r)],

s. >0 i=1,...,k is given by

k -5, r5-1 . -s, . ni
©*(13-5,r) = 1T nl, [(l-t) - ;g% (-1)7 ( .1) 17 ] . (6.10)

n i=1 3’ J

Ranark. 11 should be observed that this is exactly the egf required for the

e ew——— - -

treatment of the mvue problem in the negative binomial case when the prob-

ability function of the i-th sample is ;

1 s.4%,,-1 X, ., s, X.. -si xi' S, ?
PO = %) = —ry ( S ) e *I(1-e) '= (-1) 13( )e Ja-e) ? ;
) ELT, i le xij ‘
(6.11)
.S 'S
with e T.‘l e
gle,r.) = (1-8) - fi: (-1)° ( .1) gd , i=1,...,k. (6.12)

7. RATIOS OF MULTIPARAMETER C-NUMBERS.

We define, as ratio of multiparaneter C-nunbers with respect to ergunent

m, the function
C({m+1;n,s,r)
, = _.__::_L . 7.
RS("’E'EﬂI) C(m;n,g,r) (7.1)

Proposition 7.1. A recurrence relation for the ratio Rq(m,n,s,r). independent

of the multiparameter C-numbers, is given by |

-
. k (r Tl) (sj)r;.nj mil-r'n |
- y L3 23 2] ’ oy %% -
f— (r'n) (Sj ) . Rs(n rjh 1sD fj’ftf) ‘
=1 ~~'r, r> i=1
Rs(m;n,s,r)+n-s'n = e A A e = (7.2)

n-r'p

1<T. R_(m-i,n,s,r)
LA DsS»T
i=1

forn> 1 andnm > r'n, with
b A ~ o~

Rq(n,,],s,r) =( r-n . ‘ (7°3>
) (r'n+1) k ny-1
' 3 RLY
K (r'min,s,r)=—"——— T, )Y p )
3~ ~ ;‘ (s )nj jgl . r.(‘+] r‘1 i=1 T (7.4)
Ty i2)
i=1

_—— e L —r———— e - P e R e Y e 4 e g e -

e . B . _— il
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Propositian 7.2. A recurrence relation for the ratio Ra(m,n,s,r).

independent of the generalized C-numbers (case k=1), is given by

m m+l-rn
(:-12 ((s:") " TT Ra(m-ml-i ,n-1,8,7r)
rn) |, i=]

Rs(m,n.s,r)+m-sn= — (7.5)
Ra(m-i,n,s,r)
i=1

forn> 1and m> rn, with

Rs(m,l,s,r) = s-m (7.6)
and

Rs(rn.n,s,r) = n(rn+l)(s-r)/(r+l1) (7.7)
Proposistion 7.3. A recurrence relation for the ratio Ra(m,n,s) .

independent of the usval C-numbers (case r=1), is given by

m+l-n
17 Rsim—i,n—l,s)
i=1
Ra(m,n,s)fm-sn = o - (7.8)
v Ra(m'i,n,s)
i=1

forn>1 and m > n, with

Rs(m,l,s)

s-m (7.9)
and

Ra(n,n,s) = (s-1)n(n+1)/2 . (7.10)
Proposition 7.4. An alternative recurrence relation for the ratio

Rs(m,n,s,r), is given by

o [Rs(m-l,n,s,r)+m-sn—1] Ra(m-r,n—l,s.r)
Rs(m,n,s,r)#m-sn == - (7.11)
‘ Rs(m-l,n,s,r)

forn> 1 and m > rn.
Propositian 7.5. An alternative recurrence relation for the ratio

Ra(m,n,s), is given by

[Ra(m-l,n,s)+m-snf{] Ra(m-l,n—l.s)

Rs(m,n,s)im—sn E e e e (7.12)
Rs(m-l,n,s)

forns> 1 and m > n.

AT N AT

S e e e
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8. RELATIONS BETWEEN THE STIRLING AND C-NUMBERS.

It was observed in Cacoullos and Charalambides (1y7%), that \

s;gm s C(m,n,s) = S(m,n) (8.1)

1+

that is, the C-numbers can be approximated by the Stirling numbers of the
second kind for large s, a fact which reflects the corresponding well known i
convergence of the binomial to the Poisson (s + « , p =+ 0 , ice.86 = p/gq-+ 0 =
and hence sp or s8 convergec to the Poisson parameter A ). The above

property extends to the case of multiparameter Stirling numbers of the second

kind and multiparameter C-numbers, namely,

. -m .
si:y;m 55 C(m;E,E,E) = S(m;'r.),z‘), i=1,...,k. (8.2) i
A
This can easily be verified by using the corresponding representation L
b4
(4.2) and (£.2) of these nurdbers and noting that !
]
vn s F (;\= 1/k!. (8.3) )
5 3= k

Ak relation between the signless multiparaneter Stirling numbers of the
first kind and the multiparameter C-nurbers reflects the limiting relation
between the negative binomial and the logarithmic series distributions:

Jimo s;N IC(”‘;E"E'E)I = ls(m;E.E)l » ¥ =n 4. (8.4)
s,

1This can be seen, eg, by chowing that the egf of the s;NIC(m,n,-s,r)!-

nurbers converges to the egf of the |s(mjn,r)|-numders, that is,

, ko S T, 1 i T IR
lim, —— [T = [(J-t) - ?_ (-1)3( . )t]] = TT--.—[-mg(l-t)-): =
§.-0 N . n.! — 3 J_ N, K 3j . |
i s a=l 3 3=0 =171 =1
) (8.5)
For this note that i
1 j [-s 3 tj
200 (7)Y — (8.6) 3
s J s+ 0 ] l
{
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APPENDIX B
CHARACTERIZATIﬂcs OF DISCRETE DISTRIBUTIONS BY A CONDITIONAL

DISTRIBUTION AND A REGRESSION FUNCTION *

T. Cacoullos and H. Papageorgiou

Statistical Unit, University of Athens

Key Words and Phrases: Characterizations,discrete mixtures, identifiability,

regression.

Abstract

The bivariate distribution of (X,Y), where X and Y are non-negative
integer-valued random variables, is characterized by the conditional distribution
of Y given X and a consistent regression function of X on Y. This is
achieved when the conditional distribution is one of the distributions:a) binomial,
Poisson, Pascal or b) a right translation of these. 1In a) the conditional
distribution of Y is an x-fold convolution of another random variable independent
of X so that Y is a generalized distribution. A main feature of these
characterizations is that their proof does not depend on the specific form of the
regression function. Moreover,it is shown that the characterizations hold if the
regression function is replaced by any higher-order conditional moment. It is also

indicated how these results can be used for goodnesc-of-fit purposes.

* A shortened version of this paper is appearing in the Ann. Inst. Statist. Math.




1. INTRODUCTION

Here we are concerned with characterizing the distribution of non-

negative integer-valued random variables (r.v.) X and Y in terms of
the conditional distribution of Y given X and the regression function
E(X|Y) of X on Y. Several papers have appeared in this direction.

Korwar (1975) considered a conditional binomial or Pascal distribution

combined with linear regression and characterized the Poisson, binomial
and negative binomial distributions in the former case and the geometric
in the latter case. Dahiya and Korwar (1977) extended these characterizations

to bivariate X and Y under conditional distributions which are independent

binomials or Pascal and linear regression. khatri (1978a),(1973b),using a

slightly more general approach gave similar results for the multivariate
case. A case of non-linear regression was treated by Xekalaki (1980) in
characterizing the bivariate Poisson distribution.

In this paper more general and unifying results are obtained by by-
passing the unnecessary details involved in obtaining a specific
characterization under a specific regression function. This is achieved
by appealing to the unicity of a solution of a first-order difference
equation. Specifically, it is shown that certain conditional distributions
along with the regression functions determine uniquely the distributions
of X and Y, hence also of (X,Y), This fact can be used to generate a
wide spectrum of distributions characterized under these conditions. For
example, given a conditional binomial distribution (of Y on X), we may
choose an arbitrary given distribution for X, which in turn gives a specific

regression function; thus (=ee Section U), in addition to the distributions J

mentioned earlier, characterizationn were obtained for the lopzrithmic
distribution and several generalized dictributions, e.g., Neyman, Poicson

binomial, binomial Poisson, loparithmic binomial etc.
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Finally, it is shown that the distribution of (X ,Y) can
be similarly characterized if we replace E(X|Y) by the kth conditional
moment E[Xklfj_ for some value of k. It should also be added that the
present approach goes through in the multivariate case, which will be

treated in a subsequent paper.

2. SOME PRELIMINARIES

We shall make use of the following easily verified combinatorial

identities:
x(y) ) (y”)( ) *y(y) , (\2.1)
FOF B () Mecayamn)t () . (2.0)°
(327 v(3) ~o-0() - (2.2)
KR B )8 () (2.2)-

x(’dz-’l)-' (y+1)(’;:’l') -y(’“g'l) , (2.3)
xk(x+§—1): c, (y )/x+y+k 1 +Ck 1( )(f+¥;k12 .._+Co(y)<x+§-1> (2.3)°

where the Ai(y),Bi(y),Ci(y) denote polynomials in y of degree k. 1In
(::) m and r are integers and r30.
Moreover, a great role in the segquel is played by

Theorem 2.1 (Goldberg 1958, p.61). The linear difference equation

of order n
fo(k)yk+n*f1(k)ykfn—1+"'*fn-l(k)yk+1*fn(k)yk = g(k)
over a set of consecutive integer values of k has one, and only one,

solution for which values at n  consecutive k-values are arbitrarily

prescribed.
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3. THE MAIN CHARACTERIZATIQN THEOREMS

. Certain forms of the conditional distribution p(y|x) of Y

given X=x together with the regression function m(y) = E[le=i] of
X on Y determine the distributions of X and Y. It is to be observed
from the outset that in the main case considered here, namely, when

p(ylx) is an x-fold convolution of a non-negative integer-valued r.v.

with probability generating function (p.g.f.) ho(v), it is sufficient

to determine the distribution of either X or Y, This is so because the
p-g.f.'s glu) of X, h(v) of Y and G(u,v) of (X,Y) Cacoullos and
Papageorgiou (1981b) satisfy (3.1) (see also (3.6a)-(3.10a);equivalently,
because of the identifiability of the mixtures definmed by (3.6)-(3.10), with

mixing variable (parameter) x (see e.g., Teicher 1961).

n(v) = g(hy(v)), Gu,v) = gluny(v)) (3.1)
Here, we find first the probability function p(y) of Y.

A similar remark applies to the case in which p(y|x) determines a
shift to the right by x of a non-negative integer-valued r.v. with p.g.f.

#
h (v), so that denoting by hy(v) the conditional p.g.f. of Y given X=x,
X 13 &
b (v) = vVh'(v), h(v) = h (V)g(v). (3.2)

A characteristic of the following characterizations is that their
derivation is independent of the actual form of the regression function
m(y); this was confined to be linear in the relevant statistical literature. !
The simplification is achieved by erploying a basic theorem about the
uniqueness of a solution of linear difference equation (Theorem 2.1). The
difference equation governing p(y) in each case is obtained by using

i Lemma 3.1. Let p(y|x) be such that there exist p.g.f.'s hys h¥% independent g

of x and furctions c¢; of y (only) so that

hx(v) = [ﬁo(vfjx or hy(v) = vxh*(v) for x=0,1,2,... (3.3)

xplylx) = cl(y)p(y+1lx)¢co(y)p(y|x)+c_l(y)p(y-1Ix) (3.4)




W g
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Then p(y|x) and m(y) characterize the distribution of Y; hence of

X and (X,Y).

Proof. We have

m(y) = ] xP[X=x|Y=y] = § xgé%%§l P[x=x]
x=0

x=0

which by (3.4) can be written as
m(y) = [e)(¥Iply+Dtey(yIplydte_ (yIply-1]) /ply) (3.5)

Since this is a linear second-order difference equation in p(y) the
assertion follows by Theorem 2.1 and in virtue of (3.1) and (3.2).
Note: In the applications of the Lemma, either c,(y) or c_,({y) is
zero so that (3.5) reduces to a first-order difference equation. Now
we state the main theorems.

Theorem 3.1. Let the conditional distribution p(y|x) be one of

the distributions (3.6)-(3.10). Let m(y) = E[X|Y=y] be an arbitrary
function of y consistent with p(y|x). Then p(ylx) and m(y) together

determine the distributions of X,Y and (X,Y).

ply|x) = (;)pyqx—y s Y=0,...,%, x=0,1,... (q=1-p) (3.6)
plylx) = (Z:i>pqu-x s YEX,X+1,..., x=1,2,... (3.7)
plylx) = (x+§-%)(%)y (1- %)x, y=0,%,..., x=1,... (P=Q-1) (3.8)
ply|x) = e X ng%z ,» y=0,1,..., x=0,1,... (3.9)
ply|x) = (EX)pyqnx—y y=0,1,...,nX x=0,1,... (3.10)

Proof. By Lemma 3.1, it is enough to show that for some p.g.f. h,(v)

h (v) = [hy(n)]*

and, moreover, that p(y|x) satifies (3.u4).




Indeed, the h (v) corresponding ﬁc the distributions (3.6)-(3.10)

and the respective p.g.f.'s of X and Y (see (3.1)) are as follows:

ho(v) = pv4q, g(v) = h(xga)
- v _ A
ho(v) = 325, gtv) = h()
ho(v) = (&-Pn) L g(v) = n(EY)
no(v) = D g(v) = nAET 41)
n 1/n
ho(v) = (pv+q)™, glv) = (_____Ji)

As regards (3.4), by using (2.1) for (3.6) and (3.10), (2.2) for

(3.6a)

(3.7a)

(3.8a)}

(3.92a)

(3.10a)

(3.7) and (2.3) for (3.8), we obtain the respective difference equations

(recurrences) of the first order :

m(y) = %(y+1) B%%%%l +y y=0,1,...
m(y) = y-a(y-1) ;(yl’ y=1,2,...
m(y) = (y+1)2 E§{§§l y y=0,1,...
m(y) = X2 Pé{§§l y=0,1,...
m(y) = %; (y+1) 2%%3%2 + % y=0,1,...

Hence the proof of the theorem is complete.

(3.6v)

(3.70)

(3.8v)

(3.9v)

(3.10v)

The explicit solutions of the above difference equations (3.6b)-(3.10b)

are respectively :

y y'_
p(y) = p(O)(g} I k+1 (m(x)-k) , y=1,2,...
. y-1 ¥
p(y) = p(1)q I l R ¥=2,3,...
k= MK
Y ¥L o
ply) = p(O)ka f—— (m(k)+k), y=1,2,

(3.6c)

(3.7¢)

(3.8¢)




ply)

-1
p(o)xyh :9;) s y=1,2,... (3.9¢)

y y=1 ~
ply) = p(O)(—E) I—I ,% (nm(k)-k) , y=1,2,... (3.10¢)

where p(0) or p(1) are determined from the condition § p(y)=1.
Notice that (3.6) is a special case of (3.10) with n=1.y Also
that (3.7) and (3.8) correspond to the two versions of a Pascal r.v.,
which denotes the number of failures in (3.8) and the number of trials
up to the xth success in (3.7).
Next we consider the case described by (3.2). We prove

Theorem 3.2 Let p(y]x) be one of the distributions (3.11)-(3.13).

Let m(y) be consistent with p(y|x). Then p(y|x) and m(y) together

determine the distributions of X,Y and (X,Y).

ply|x) =(y'_]x)py'x q" YT x<y<x+n, (3.11)
o X
p(y|x) = A (;_—x), yex, x=0,1,... (3.12)
- N
_ (Nty-x-1y Py ™ . P o
plylx) = N-1 )(Q) (1 Q) y»x20, (P=Q-1) (3.13)

13
Proof. Apply Lemma 3.1 to (3.11)-(3.13) with h given, respectively, by

h*(v) = (pviq)” (3.11a)
h*(v) = VD) (3.12a)
n“(v) = (g-Pn) N (3.13a)

Now using the identity

JOMERTRN R N RN

we can write m(y) for (3.11) in the form

.b\é




' | o I 2 . ”

» . .‘_ BB - i
n(y) = y-(n- y‘) P L(y%l) g—%’{— m(y-1). (3.110)

For (3.12) we easily find

m(y) = y-A E&’%l : (3.12p)

and for (3.13), making use of the identity

N+y x- ) (F+ 1) ~(N4y- 1)(§ -y-x~- 2)+ (N+y x—2)

we have

m(y) = y-(N+y-1) _PT(D)(LY-)—) 9 I(>(y 1) m(y-1) (3.13v)

Here again p(y) is obtained as the solution of the corresponding first-

order difference equation. In point of fact, we have

y_y '
= 2 n-k+14m(k-1)
| p(y) p(O)(ql 'kr:Tl ) , (3.11c)
y _Z_ 1
p(y) = p(0) A }|(=|1 ey gra S (3.12¢)
Py L -1)-(N+k-
p(y) = p(o)(g) T T 2Er-(rk-1) (3.13¢c)

(-
vhere p(0)is also determined since z p(y)=1.
y=0 |

Finally, we give ancther set of characterizations under the assumptions
of Theorem 3.1, i.e. (3.6)-(3.10), replacing m(y) = E[X|Yzy] by a
higher condition»" moment mk(y) = E[Xlezy] for a k»>1. l

Theorem 3.3. For a k>1, let m}((y) be given function of y which

is consistent with one of the conditional distributions (3.6)-(3.10).
Then p(y|x) and mk(y) together determine p(y) up to k-1 arbitrary
probabilities, say, p(1),...,p(k-1).

Proof. By using the generalized identities (2.1)°-(2.3)° and working as

in Theorem 3.1, we obtain a k-th order difference cquation in p(y).
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Hence the assﬂition.
Note. The undetermined p(1),...,p(k-1) may be obtained by using e:g. as
initial conditions the values of m(y) for y=1,...,k-1, since we always

have the condition ) p(y)=1, thus determining p(0).
y=0

4. SOME APPLICATIONS-COROLLARIES OF THEOREM 3.1

It was already pointed out that in characterizing the distribution
of X,Y and (X,Y) in terms of the conditional distribution p(y|x) of
Y given X=x and m(y)=£[X]Y=y], the regression function m(y) must
originate from some non-negative integer-valued r.v. X and be consistent
with .p(y|x). This is the spirit of the following characterizations-
applications of Theorem 3.1. In the applications of Theorem 3.1, it should
be observed that, for a specific r.v. X,Y has the generalized (compound)
distribution of X by another r.v. z; (denoted by Xin), since Y has

the representation

Y = Zl+*"+Zx

where the Z; are i.i.d.,with p.g.f. ho(v), independent of X.

The following characterizations, in addition to the usual discrete
distributions, cover some more involved generalized discrete distributions,
of which the mere interesting ones are presented here.

Proposition 4.1. Suppose (3.6) holds. Then we have:

(a) Tor some A>0

m(y) = ytA\q , y=0,1,2,...,

iff X is Poisson (A);.then Y is also Poisson (Ap) and (X,Y) is a
bivariate Poisson-Bernoulli model, studied by Leiter and Hamdan (1973) and
Cacoullos and Papageorgiou (1980).

(b) For some 0<p‘z1-q‘<l and some integer n>0

’

P9
q tpq

Ogy<n.
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iff X is binomial (n,p°); then Y is also a binomial (n,pp°) and

“ (X,Y) is a special case of a bivariate binomial distribution.

(c) For some N>0, P=Q-1>0

NPq

- Q
m(y) = 6:§ay + rq

y=0,1,...

iff X 4is negative binomial NB(N,P); then Y 1is also NB(N,Pp) and
(X,Y) is a bivariate negative binomial-Bernoulli model, studied by A

Cacoullos and Papageorgiou (1981a).

(d) For some 0<B<]

1 .
m(y) = I:aa y y=1,2,... , 3

1 6q

m(0) = - 1op(1-8q) 1-6q

iff X {is logarithmic (8); then Y follows a modified logarithmic (6,6°),

with & the probability of Y=0 and 6° its ordinary parameter, where

- - log(l"e ) . Ee .
6 =pl0) = Ty ¢ T 1%

(X,Y) is a bivari-te logarithmic-Bernoulli model (cf. Cacoullos and
Papageorgiou, (1981b).

Remark. Cases (a), (b) and (c), m(y) = ay+d>, y=0,1,... , as
considered by Korwar (1975). Case (d), exhibiting linearity only for
y>0, was missed by Korwar in view of the limitations of treating the
problem in terms of a specified regression function. The present more ‘
general approach allows a variety of m(y), including those which {
correspond to truncated versions of X. For example, if X 1is truncated |
on the left at r, m(y) is lincar ouly for y3r under (3.6) and the 1
corresponding characterizations hold with appropriate modifications for

Y and (X,Y).
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(e) Fo{ some positive A and ©
Qs ,(c,)
m(y) = y+ —yrt y=0,1,...
Sy(cl)

where S (t) is a Stirling polynomial defined by Charalambides (1977),

T X -8
S ()= ¥ s(n)t  , ¢, =re P,
n k=0 1

and S(n,k) denotes a Stirling number of the second kind,
iff X has a Neyman distribution, i.e., Poisson (1) vPoisson (8);

then Y has also a Neyman: Poisson (1) vPoisson (8p) and (X,Y),

with pgf

6lu,v) = exp[k{ee[‘J(QﬂW)—ﬂ _1}.] )

is a special case of a bivariate Neyman Type 1 distribution, Holgate (1966).

(f) For some 0<p‘zl-q°<1, A>0 and an integer n>0

.. C (c.)
i,n "2

m(y) = —P9 AT +y , ys0,1,...
Q'tp’q Gy’n(c?3

where Cy n(t) is the polynomial, Charalambides (1977),

% C(y,k,n)tk , c. = Mg +p'g)” s

c n(t) = 2
Ys k=0

and C(y,n,k) are the C-numbers,iff X is Poisson (A) v binomial (n,p’);

then Y 1is also a Poisson (A) v binomial (n,p’p).

It is worth noting that (X,Y) with p.g.f.
G(u,v) = exp[l{[§'+p'u(q+pVi]n -1}]

is a special case of the bivariate Poisson binomial type I distribution

studied by Charalabmides and Papageorgiou (1981).

L
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(g) For some P=Q-1>0, A>0 and an N>0

c (c,)
P 1,-N"73
ny) =y g oo (3 y=0,1,2,...
Y9"
where
k -N
Cy,-N(t) = § C(y,k}—N)t s T 2 (Q-Pq)

k=0

iff X is Poisson (1) v negative binomial (N,P); then, Y is also

Poisson «(A) v negative binomial (N,Pp).

. (h) For some 0<p’zl-q°<1l, A>0 and an integer n>0

AgS (c,)

m(y) = ———li%éay—i— +y y=0,1,2,...
y,n 4 :

where

’ - k - . 'Ap . . 'Ap -1
Sy,n(t) = kgo (n)k S(y,k)t', c, =p’e (q“+p’e ")

iff X 1is binomial (n,p’) v Poisson (A); them Y is also binoﬁial

(n,p’) v Poisson (Ap).

(i) For seme O<p’=1-q°<1,0<p*=1-g*<1 and positive integers n,n*

* c «(cg)
m(y) = P°q yrln.n® S y, Osyson*
Qi +pq cy,n,n*(cs)
where
k
&
Cy,n - (1) = i (n)k C(y,k,n*)t
k=0

and

-1
e %
= p*(g#+p*q)” {q +p (a*+p*q)" )

)

iff X is a binomial (n,p’) v binomjal (p%,p*); then Y is also a binomial
e
=

(n,p ’) v binomial (n%'-"p'.':p)

(§) For some P=Q-1>0, O<p’=1-q°‘<1 an integer n>0 and an N>0

(c.)

mly) = y- O“g' .JL_.le?L“%. y=0,1,2,...
3Ny

IR T T

TRTTTTET

e - A
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1\. where
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- vk
Cy n,y(t) = kzo (n), Cly k,-N)t

|
and

-N Nt
cg = p (Q-PQ) "{q‘+p°(Q-Pq) "}

9

iff X is binomial (n,p’) v negative binomial (N,P); then Y is

also a binomial (n,p’) v negative binomial (N,Pp).

=

(x) For some P=Q-1>0, A>0 and N>0

Ag Sy _y(ep)

) #
m(y) = +y y=0,1,2,... -
Sy,_N(c.?) ;1
t.‘
where ‘
)
S (-t) = § (-1)k(-N)k s(y,k)tk ’
Y!-N k=0
and
c, = l’e.MD(.Q—Pe—M))-1 .
iff X is negative binomial (N,P) v Poisson (A); then Y is also a
negative binomial (N,P) v Poisson ()p).
({) For some O<p‘'=1-q‘<1,P=Q-1>0, N>0 and an integer >0
» C ("C ) l
+1,-N,n 8
m(y) = =B 9_ Yo7 - +y y=0,1,2,...
qQ'tp’q Cy,_N’n(.cei
%
where !
k , |
C, _x (-t) = { (-1) (-N)k C(y,k,n)t
y” 9n k._.o
i
and i
" a1 |
cg = P(q'+p‘q) {Q-P(q"+p'qQ)"}

iff X is negative binomial (N,P) v binomial (n,p°); then Y is j
1
also a negative binomial (N,P) v binomial (n,p’p). ‘

(m) For some P=Q-1>0, P%=Q%-1>0 and N>0, N¥>0

) y=0,1,2,...
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where

* - k " k
cy,-N,-N*(’t) = kzo (-1) (-N)k Cly,k,-N*¥) t
and

cq = P(Qi-Pig) M (Q-P(qr-Prq) )T,

iff X is negative binomial (N,P) v negative binomial (N%P*); then Y
is also negative binomial (N,P) v negative binomial (N%P“p)

(n) For some 0<B6<1, A>0

A\g S% . (c. )
m(y) = — .yl 0, y. y:1,2,... ,
% Y Y
Sry(910'
- XqS*l(clo)
m(0) = —— oo
log(1-pe”P)
where
S% (t) = { (k-1)! S(y,k)t¥
y k=1
and
AP{y_ APy
0 = O {1-8e "F}

iff X 1is logarithmic (8) v Poisson (1); then Y is also a logarithmic
(6) v Poisson (Ap).

(o) For some 0<B<l, 0<p‘=1-q°<l and an integer n>0

( p'a_ Cyn ntc11)
m(y) = 525 ——%——ir———y— +y y=1,2,...
qQ'+p'q C‘y,n €44
- -1 P’q .
m(0) = . - cx ey |
log{1-6(q"+p‘qQ)"} q'+p‘q i
where
¢t (1) = f (k-1)! Cly,k,m)tk
y,n ¢
k=1
and

-

>

€4y = 8(q +p q)"{1-6(q +p ‘)™
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iff X is logarithmi\,(ﬂ) v binomial (n,p°); then Y 1is also logarithmic

“~

(6) v binomial (n,p’p).

(p) For some ' 0<6<l, P=Q-1>0 and n>0

c* (c,.)
_ . _Pa_ _ y+1,-NC12 )
* n(y) = y- 5= =% y=1,2,...
| Q-pg T\ (c))) >4
m(0) = L Bk (e
log{1-8(Q-Pq) '} Q-Pgq ¢
where
¢t (= ] kD! cly,k,NeK
y»~N k=1
and

-1
Cyy = e(Q-Pq)'N{l-e(Q-rq)'N} .

iff X is logarithmic (8) v negative binomial (N,P); then Y is also a

logarithmic (8) v negative binomial (N,Pp),

Proposition 4.2. Suppose (3.7) holds. Then we have:

-\/ (a) For some O0<p’=1-q°<1

m(y) = 38— y+ — =1,2,....
YV 3 Y g T
iff X is geometric (p°); then Y is also geometric (p“p). ’%

(b) For some  0<b<l

y-1 y-1

e -

m(y) = y-q (a#6p)” "-9" | voy.2,... |
(q+6p)Y-q’

iff X is logarithmic (8); then “Y is a logarithmic (@) v geometric (p).

Proposition 4.3. Suppose (3.8) holds. Then we have :

v (a) Tor some P=Q-1>0 and a x>0

Cy+1 ,—1 (C13)

m(y) - o C -1(6_1_3__)_. - y y:O,l,?,.--\

wherc Cy _l(t) is-defined under Proposition 4.1 (g) and
L]
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-1
33 =2 ",

iff X is a Poisson (A\); then Y is a Poisson ()) v geometric (1/Q),

(b) For some 0<p=1-q<1 and an integer n>0

C (c,,)
- u
m(y) = - ytl,n,-1 47 Y, y=0,1,2,..

Cy,n,-l(clu)

where Cy n.-1{t) is defined under Proposition 4.1 (j) and
k Ad

ey = pQ a7,

iff X is a dbinomial (n,p); then Y
(1/Q).

is a binomial (n,p) v geometric

(c) For some P’=Q’-150

c . (e, )
-N,- 15
n(y) = - e -y y=0,1,2,...,
y,-N,-1 15
where Cy -N _1(-t) is defined under Proposition 4.1 (m) and
> k)

cs = PO HQ-PQTI)TT,

iff X is a negative binomial (N,P’); then Y is negative binomial
(N,P*) v geometric (1/Q).

(d) For some  0<8<1

c (c..)
m(y) = - —E%+1’(1 %6 -y, y=1,2,...,
y,-1 716
-c
m(O) = ~_"_'1—'6T ]
log(1-6Q )

where C%
L ]

_1{t) is defined under Proposition 4.1 (p) and

g * Q'l(l-eo'l)'l_

iff X is a loparithmic (€); then ¥

(1/Q).

is a logarithmic (8) v geometric
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\ Proposition 4.4. Suppose (3.9) holds. Then we have:
\/ (a) For some A>0 and some 6>0
S _..(eq)
+1° 717 -A
m(y) = g c , Cyp = 6 T, y=0,1,2,...
y 17

where Sy(t) is defined under Proposition 4.1 (e)

iff X is a Poisson (8); then Y 1is a Poisson (8)v Poisson (A) and

(X,Y) is a bivariate Poisson-Poisson model studied by Leiter and

Hamdan (1973) and Cacoullos and Papagecorgiou (1980).

e

(b) For some O<p=1-gq<1 and an integer n>0

p q
S (c,,) ¢!
y+i.n 187 oo61,2,...,

m(y) =
Sy,n(cle)

where Sy n(t) is defined under Proposition 4.1 (h) and
]

A1

- “Ae-
cig = Pe (qtpe ") 7,
iff X is a binomial (n,p); then Y is a binomial (n,p) v Poisson

).

(¢) For some P=Q-1>0 and an N>0

Sy+1,-n("C10)
Sy’_N(-clg)

m(y) = > y=0,1,2,...,

where Sy _N(—t) is defined under Proposition 4.1 (k) and
]

_ S P | -1 |
¢ig = Pe (Q-pe ") .

iff X 1is a negative binomial (N,p) then Y 1is a negative binomial i
(N,P) v Poisson (). i
(d) Tor some 0<b¢l . E

¥ (c.,.)
+1° 720
r mW):"gwﬂn“ s ¥y=1,2,...,
S"y(c?o)
-c
m(0) = ——““—Zg"?f‘ ’
log(1-6e 7)
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where S*y(t) is defined under Proposﬁkion 4.1 (n) and

- -A
c20 = Be "(1-6e

-\ -
)71

iff X is a logarithmic (8); then Y is a logarithmic (8) v Poisson (2)

Proposition 4.5 Suppose (3.10) holds. Then we have:

(a) For some A0

c (c, )
+l,n 721 n
L=+ L e, = Aq, yE0,1,2,..,

m(y) =
y,n(c21)

where Cy n(t) is defined under Proposition 4.1 (f)

b}
iff X is a univariate Poisson (A); then Y 1is a Poisson (A) v binomial
(n,p) and (X,Y) is a bivariate Poisson-binomial model studied by

Cacoullos and Papageorgiou (1980),

(b) For some 0<p’=1-q“<1 and an integer n‘>0

Cye1,n:n'%22)

m(y) =
ncygu;n(CQQT

+ L Osysn'n,
n

where Cy r.n(t) is defined under Proposition 4.1 (i) and
L R )

’ ’ ». N ‘1
c,p = P'a(g’+p’q) 7,
iff X is a binomial (n’,p°): then Y dis a binomial (n;p’) v binomial

(n,p).

(c) For some P=Q-1>0 and an K>0 ;

!
C (-c..) i
n(y) = B%illlﬂl?:g—2%~ + % . v=0,1,2,... I
ys-N,n 23 i
where C (-t) is defined under Proposition 4.1 ({) and

y,-N,n ]

¢, . = Pqh(Q-Fq™?

23 q q ’

iff X 1is a negative binomial (N,P); then Y is a negative binomial

(N,P) v binomial (n,p).
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(d) For some 0<6<1 ,
. C (c, )
m(y) = y+l,n 24 + Y,
i3 n
nC y,n(CQu)
el
m(0) = ¢ 1,n(c2u)

n log(l-eqn)

whore C*y n(t) is defined under Proposition 4.1 (0) and

?

n n,-1
Cyy = 89 (1-6q7) ~

iff X 1is a univariate logarithmic (6); then Y 1is a logarithmic

(8) v binomial (n,p).

5. SOME APPLICATIONS -~ COROLLARIES OF THEOREM 3.2

Proposition 5.1. Suppose (3.12) holds. Then we have:

(a) For some  6>0

iff X 1is a univariate Poisson (6); then Y is also a Poisson (8+)).

(b) For some u>0

A Hi:y- 1

(2012 it (8)

(8)

m(y) = y-y y=0,1,2,...

where H*y(t) are the modified Hermite polynomials, Kemp and Kemp (1965)

defined as

[1/2y] y!ty-2j

H: (t) = _—
y 320 (y-23)!3'2?

E and 8=A(2u)-1/2\

iff X 1is a doublet Poisson (i.e. X=2Z where Z is a Poisson (u));
E then Y 1is a Hermite distribution,i.e., a convelution of an ordinary
Poisson with a doublet Poisson.

1 (c) For some 6>0 and some u>0

Avml{x,a,s](uo'n)}
m(y) = y- S y=0,1,2,...
Ay{X,O,Sj(uc )}

. . .




where

A 03,6,5:()) = 3 ¥~ 3ed S, (1)
AR E N S 2 L

and Sj(t) was defined under Proposition 4.1 (e),
iff X is a Neyman (u,0); then Y is a "Short" distribution (A,u,8),

Kemp (1967)i.e., a convolution of a Poisson (1) with a Neyman (u,0).

6. SOME STATISTICAL APPLICATIONS OF THE CHARACTERIZATIONS

The preceding results, in addition to their probabilistic interest,
can be used in goodness-of-fit tests in a variety of situations.

For illustration, consider the case in which records (X) of accidents
and corresponding fatal accidents (Y) are available for a series of
periods. Then we may be faced with identifying the distribution of X
and Y wunder the natural assumption that Y given X is binomial.

This is the situation described by (3.6). A possible test, within the
framework of these characterizations, is to look at the regression

function m(y) of X on Y. Thus, if wm(y) is linear
m(y) = atby, y=0,1,...,

then (Proposition 4.1 (a),(b),(c)), a regression line with slope b=1,
shows that X (hence also Y) is a Poisson, a b<l indicates that X
(hence also Y) is a binomial and a b>1 suggests a negative binomial
for X and Y. On the other hand, a line m(y) = by with b>1 for
y>1 and an isolated point at y=0 (Proposition 4.1 (d)) indicates a

logarithmic X.

Similar remarks can be made concerning the cases of more complicated )
regreassion functient, which ar a rule, take us away {rov the cimple
classical disccrete distritutions. This, however, is beyond the scope

of the present investipation and we shall not pursue it herc any further.
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0<p’=1-q’<1 and some integer n>0

m(y) = —3 - y+n B9 Osy<n.
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